Những chủ đề đặc biệt Chất khí

Tính nén được

Các hệ số nén đối với không khí.

Các nhà nhiệt động học sử dụng hệ số này (Z) để thay đổi phương trình khí lý tưởng nhằm tính đến hiệu ứng nén của khí thực. Yếu tố này đại diện cho tỷ lệ giữa khối lượng thực tế và lý tưởng. Nó đôi khi được gọi là "yếu tố sai lệch" hoặc hiệu chỉnh để mở rộng phạm vi hữu ích của định luật khí lý tưởng cho các mục đích thiết kế. Thông thường giá trị Z này rất gần với sự thống nhất. Hình ảnh hệ số nén minh họa Z thay đổi như thế nào trong một phạm vi nhiệt độ rất lạnh.

Số Reynolds

Trong cơ học chất lỏng, số Reynolds là tỷ số giữa lực quán tính (vsρ) và lực nhớt (μ/L). Nó là một trong những số không thứ nguyên quan trọng nhất trong động lực học chất lỏng và được sử dụng, thường cùng với các số không thứ nguyên khác, để cung cấp tiêu chí xác định độ tương tự động. Như vậy, số Reynolds cung cấp mối liên hệ giữa kết quả mô hình hóa (thiết kế) và các điều kiện thực tế ở quy mô đầy đủ. Nó cũng có thể được sử dụng để mô tả dòng chảy.

Độ nhớt

Chế độ xem vệ tinh về mô hình thời tiết ở vùng lân cận Quần đảo Robinson Crusoe vào ngày 15 tháng 9 năm 1999, cho thấy một hình thái mây hỗn loạn được gọi là đường xoáy Kármán

Độ nhớt, một tính chất vật lý, là thước đo mức độ dính của các phân tử liền kề với nhau. Vật rắn có thể chịu được lực cắt do sức mạnh của các lực liên phân tử dính này. Một chất lỏng sẽ liên tục biến dạng khi chịu một tải trọng tương tự. Trong khi chất khí có giá trị độ nhớt thấp hơn chất lỏng, nó vẫn là một đặc tính quan sát được. Nếu các chất khí không có độ nhớt, thì chúng sẽ không dính vào bề mặt của cánh và tạo thành một lớp ranh giới. Một nghiên cứu về cánh đồng bằng trong hình ảnh Schlieren cho thấy rằng các hạt khí dính vào nhau (xem phần Lớp ranh giới).

Sự hỗn loạn

Cánh delta trong đường hầm gió. Bóng tối hình thành khi các chỉ số khúc xạ thay đổi bên trong chất khí khi nó nén ở mép trước của cánh này.

Trong động lực học chất lỏng, dòng chảy rối hay dòng chảy rối là một chế độ dòng chảy được đặc trưng bởi những thay đổi hỗn loạn, đặc tính ngẫu nhiên. Điều này bao gồm khuếch tán xung lượng thấp, đối lưu động lượng cao, và sự biến đổi nhanh chóng của áp suất và vận tốc trong không gian và thời gian. Chế độ xem vệ tinh về thời tiết xung quanh Quần đảo Robinson Crusoe là một ví dụ.

Lớp ranh giới

Trên thực tế, các hạt sẽ "dính" vào bề mặt của một vật thể chuyển động qua nó. Lớp hạt này được gọi là lớp biên hay lớp ranh giới. Ở bề mặt của vật, bản chất là tĩnh do bề mặt ma sát. Đối tượng, với lớp ranh giới của nó thực sự là hình dạng mới của đối tượng mà phần còn lại của các phân tử "nhìn thấy" khi đối tượng tiếp cận. Lớp ranh giới này có thể tách khỏi bề mặt, về cơ bản là tạo ra một bề mặt mới và thay đổi hoàn toàn đường dẫn dòng chảy. Ví dụ cổ điển về điều này là một chiếc airfoil bị đình trệ. Hình ảnh cánh đồng bằng cho thấy rõ lớp ranh giới dày lên khi khí chảy từ phải sang trái dọc theo mép dẫn đầu.

Nguyên tắc entropy cực đại

Khi tổng số bậc tự do tiến tới vô cùng, hệ thống sẽ được tìm thấy trong trạng thái mô tương ứng với tính đa bội cao nhất. Để minh họa nguyên tắc này, hãy quan sát nhiệt độ da của một thanh kim loại đông lạnh. Sử dụng hình ảnh nhiệt của nhiệt độ da, lưu ý sự phân bố nhiệt độ trên bề mặt. Quan sát ban đầu về nhiệt độ này đại diện cho một " vi hạt ". Vào một thời điểm nào đó trong tương lai, lần quan sát thứ hai về nhiệt độ da sẽ tạo ra một vi hạt thứ hai. Bằng cách tiếp tục quá trình quan sát này, có thể tạo ra một loạt các vi hạt minh họa lịch sử nhiệt của bề mặt thanh. Có thể mô tả đặc điểm của chuỗi vi mô trong lịch sử này bằng cách chọn trạng thái vĩ mô phân loại thành công tất cả chúng thành một nhóm duy nhất.

Cân bằng nhiệt động lực học

Khi sự truyền năng lượng ngừng lại từ một hệ thống, điều kiện này được gọi là cân bằng nhiệt động lực học. Thông thường, điều kiện này có nghĩa là hệ thống và môi trường xung quanh có cùng nhiệt độ để nhiệt không còn truyền giữa chúng. Nó cũng ngụ ý rằng các lực bên ngoài là cân bằng (thể tích không thay đổi) và tất cả các phản ứng hóa học trong hệ thống đều hoàn thành. Tiến trình thay đổi cho các sự kiện này tùy thuộc vào hệ thống được đề cập. Một thùng chứa nước đá được phép tan chảy ở nhiệt độ phòng phải mất hàng giờ, trong khi trong chất bán dẫn, sự truyền nhiệt xảy ra trong quá trình chuyển đổi thiết bị từ trạng thái bật sang trạng thái tắt có thể theo thứ tự vài nano giây.